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Abstract
In this paper, we construct a Q-operator as a trace of a representation of the
universal R-matrix of Uq(ŝl2) over an infinite-dimensional auxiliary space.
This auxiliary space is a four-parameter generalization of the q-oscillator
representations used previously. We derive generalized T–Q relations in which
three of these parameters shift. After a suitable restriction of parameters,
we give an explicit expression for the Q-operator of the 6-vertex model and
show the connection with Baxter’s expression for the central block of his
corresponding operator.

PACS numbers: 02.30.Tb, 05.50.+q, 11.25.Hf, 02.20.−q

1. Introduction

Baxter’s Q-operator has an interesting history. It was first constructed in 1972 as a tool for
solving the 8-vertex model. The background was that the 6-vertex model had been solved by
Bethe ansatz in the mid 1960s by Lieb and Sutherland [1–4]. However, this technique could
not be simply extended to the 8-vertex model due to the absence of a suitable Bethe ansatz
pseudo vacuum (a problem associated with the lack of ‘charge conservation’ through vertices
for this model). Then, in a seminal series of papers [5–8], Baxter introduced his Q-operator1

as an apparent deus ex machina which allowed him to write down Bethe equations for the
eigenvalues of the 8-vertex model transfer matrix without having an ansatz for the eigenvectors
(he did of course construct some eigenvectors using other techniques, see [6–8]).

His approach was to start with the 6-vertex model Bethe ansatz, and to derive certain
functional relations between the transfer matrix T (v) and a matrix Q(v)—the elements of
both matrices being entire functions. He went on to show that the reverse argument could be
used in order to start from the functional relations (and some other properties of T (v) and
Q(v)) and derive the Bethe equations. He then considered the 8-vertex model, constructed a
1 In fact, Baxter gives two different constructions of a Q-operator in [5] and [6–8]. We shall continue for the moment
to use the generic term ‘Baxter’s Q-operator’, and will specify to which construction we are referring when it becomes
necessary to do so.
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Q(v) operator that obeyed the correct requirements, and used the reverse argument to derive
Bethe equations. The approach is described clearly in Baxter’s book [9].

Later on in the 1970s, the quantum inverse scattering method (QISM) was developed and
used to produce a rather simpler derivation of the same Bethe equations for the 8-vertex model
(the algebraic Bethe ansatz approach) [10]. Baxter also invented his corner transfer matrix
technique for the 8-vertex model [9]. So, remarkably successful though it was, the Q-operator
approach perhaps came to be considered by many as a historical curiosity.

However, in the last few years there has been something of a revival of interest in Q. The
reasons for this include the following.

• Some understanding has been obtained into how Q fits into the QISM/quantum-groups
picture of solvable lattice models [11–18].

• The discovery of the mysterious ODE/IM models correspondence—relating functional
relations obeyed by the solutions and spectral determinants of certain ODEs to Bethe
ansatz functional relations [19–21].

• The role of Q in classical integrable systems as a generator of Backlünd transformation
has been understood in certain cases (see [22] and references therein).

In this paper, we are concerned with the first point. The key to the QISM approach
to solvable lattice models is to understand them in terms of an underlying algebra A. The
generators of A are matrix elements Lij (z), where i, j ∈ {0, 1} (in the simplest case) and z

is a spectral parameter. The set of relations amongst the generators are given by the matrix
relation

R(z/z′)L1(z)L2(z
′) = L2(z

′)L1(z)R(z/z′) (1.1)

where L1(z) = L(z) ⊗ 1,L2(z) = 1 ⊗ L(z) and R(z) is a 4 × 4 matrix.
This QISM description was later refined in terms of quantum groups. In this picture A

is recognized as a quasi-triangular Hopf algebra (also known as a quantum group). For the
vertex models of the title, the algebra A is Uq(ŝl2). Families of R-matrices and L-operators
are then all given in terms of representations of a universal R-matrix R ∈ Uq(b+) ⊗ Uq(b−),
where Uq(b±) are two Borel subalgebras of Uq(ŝl2). The relevant Uq(ŝl2) representations
are the spin-n/2 evaluation representations

(
π(n)

z , V (n)
z

)
defined in section 3 (in this paper, a

representation of an algebra A is specified by a pair (π, V ), consisting of an A module V and
the associated map π : A → End (V )). Then we have

R(z/z′) ≡
(
π(1)

z ⊗ π
(1)

z′

)
R L(z) ≡ (

π(1)
z ⊗ 1

)
R

and (1.1) follows as a simple consequence of the Yang–Baxter relation for R. More generally,
we can define

T (n)(z) ≡ Tr
V

(n)
z

(L(n)(z)) where L(n)(z) ≡ (
π(n)

z ⊗ 1
)
R and n ∈ Z. (1.2)

The T (n)(z) form a family of Uq(b−) valued transfer matrices. The transfer matrix for a
particular lattice model is given by choosing a representation of one of the T (n)(z) over a
particular ‘quantum space’. For the homogeneous N site 6-vertex model, the quantum space
is the N-fold tensor product V

(1)
1 ⊗ V

(1)
1 ⊗ · · · ⊗ V

(1)
1 , and the transfer matrix of the lattice

model is

T (1)(z) =
(
π

(1)
1 ⊗ π

(1)
1 ⊗ · · · ⊗ π

(1)
1

)
T (1)(z).

Let us now consider how functional relations among the T (n)(z) arise. The starting point
is to note that tensor products of the V (n)

z have the following structure.
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Proposition 1.1.

(a) V
(n)

zqn+1 ⊗V (1)
z has a unique proper Uq(ŝl2) submodule V

(n−1)

zqn+2 , and furthermore V
(n)

zqn+1 ⊗
V (1)

z

/
V

(n−1)

zqn+2 � V
(n+1)
zqn ,

(b) V (1)
z ⊗ V

(n)

zqn+1 has a unique proper Uq(ŝl2) submoduleV
(n+1)
zqn , and furthermore V (1)

z ⊗
V

(n)

zqn+1

/
V

(n+1)
zqn � V

(n−1)

zqn+2 .

This proposition is a specialization of the more general tensor product theorem due to Chari
and Pressley [23]. Now, if � denotes the coproduct of Uq(ŝl2), then the following is a
consequence of the defining properties of R:(
π

(n)

zqn+2 ⊗ π(1)
z ⊗ 1

)
(� ⊗ 1)R =

(
π

(n)

zqn+2 ⊗ π(1)
z ⊗ 1

)
R13R23 = L(n)

1 (zqn+2)L(1)
2 (z).

If we take the trace of both sides of this equation over V
(n)

zqn+1 ⊗ V (1)
z , and use part (a) of

proposition 1.1 as well as the property of the trace given by proposition 3.1 in order to rewrite
the lhs, we arrive at the functional relation

T (n−1)(zqn+2) + T (n+1)(zqn) = T (n)(zqn+2)T (1)(z). (1.3)

Similarly, by using part (b) of proposition 1.1 we obtain

T (n−1)(zqn+2) + T (n+1)(zqn) = T (1)(z)T (n)(zqn+2). (1.4)

Such functional relations and this approach to deriving them are discussed in many works (see
for example [24]).

Baxter’s Q-operator also obeys functional relations of a rather similar form to (1.3) and
(1.4) (see [9]), and in [12, 13] the authors showed that it was possible to obtain such relations
by constructing Q in a manner similar to the above. In analogy with (1.2), they proposed
constructing Q-operators Q±(λ) as

Q±(λ) = TrV±(λ) ((π± ⊗ 1)R) (1.5)

where (π±, V±(λ)) were infinite-dimensional ‘q-oscillator’ representations of the Borel sub-
algebra Uq(b+) of Uq(ŝl2) [13].

In this paper, we consider more general infinite-dimensional representations (π(z,s),

M(z, s)) of Uq(b+), parametrized in terms of a spectral parameter z and a vector s =
(s0, s1, s2) ∈ C

3. Following [12, 13], we use them to define a Q-operator

Q(z, s) = TrM(z,s )((π(z,s ) ⊗ 1)R).

We then consider tensor products of M(z, s) with V (1)
z and using the result expressed in

proposition 2.2 go on to derive generalized T–Q relations

T (1)(z)Q(z, s) = Q(z, s )T (1)(z) = Q(zq2, s+) + Q(zq−2, s−). (1.6)

These relations involve the shifted vectors s± = (q±1s0, s1, q
±2s2). After a particular

specialization of the vector s, we use the appropriate representation of Q(z, s ) to construct an
explicit form of the Q-operator for the 6-vertex model (see (5.5)). This construction works
for all diagonal blocks of Q(z, s). Furthermore, the ‘spin zero’ central block of this operator
coincides, up to an overall divergent factor, with Baxter’s explicit expression for this block
given by equation (101) of [6] (Baxter’s construction yields an explicit expression for this
block only).

The layout of the paper is as follows: In section 2, we define the infinite-dimensional
representation M(z, s) of Uq(b+) and give proposition 2.2 concerning its tensor products
with V (1)

z . In section 3, we define a generalized Q-operator Q(z, s ) and derive the T–Q
relations (1.6). We show that T (1)(z′) and Q(z, s ) commute. In section 4, we give the



10018 M Rossi and R Weston

explicit form, Q(z, s), of our Q-operator for the 6-vertex model on a lattice with N sites, and
show how the coefficients arise in the T–Q relations (i.e. the coefficients

∏N
i=1φ1(z, s,wi)

and
∏N

i=1 φ2(z, s,wi) in (4.17)). We also discuss the commutation relations of Q(z, s) and
Q(z′, s ′). In section 5, we give the explicit form (5.5) of Q(z, s) for the 6-vertex for a particular
specialization of the parameter s. We give the connection with Baxter’s explicit expression
for the central block. Finally, in section 6, we make some observations about our construction
and discuss some possible avenues of work for the future.

2. Infinite-dimensional representations of Uq(b+)

In this section, we define a level-zero representation M(z, s) of the Borel subalgebra Uq(b+) of
U ′

q(ŝl2). We then consider the tensor products of M(z, s) with the spin-1/2U ′
q(ŝl2) evaluation

module V (1)
z . We also give the restrictions of s for which M(z, s) reduces to a q-oscillator

representation.

2.1. Definition of M(z, s)

First, let us recall the definition of U ′
q(ŝl2) and V (n)

z (see, for example, [25] for an introduction

to quantum affine algebras). U ′
q(ŝl2) is the associative algebra over C generated by the letters

ei, fi, ti , t
−1
i , with i ∈ {0, 1}, and with relations

[ei, fj ] = δi,j

ti − t−1
i

q − q−1
(2.1)

tiei t
−1
i = q2ei tiej t

−1
i = q−2ej (i �= j) (2.2)

tifi t
−1
i = q−2fi tifj t

−1
i = q2fj (i �= j) (2.3)

eie
3
j − [3]ejeie

2
j + [3]e2

jeiej − e3
j ei = 0 (i �= j) (2.4)

fif
3
j − [3]fjfif

2
j + [3]f 2

j fifj − f 3
j fi = 0 (i �= j). (2.5)

We use the coproduct � : U ′
q(ŝl2)→U ′

q(ŝl2) ⊗ U ′
q(ŝl2) given by

�(ei) = ei ⊗ 1 + ti ⊗ ei �(fi) = fi ⊗ t−1
i + 1 ⊗ fi �(ti) = ti ⊗ ti .

Note, that the prime on U ′
q(ŝl2) indicates that we are not including a derivation in the definition.

In this paper, we consider U ′
q(ŝl2) and its representations at generic values of q (i.e., q is not a

root of unity).
The U ′

q(ŝl2) evaluation module V (n)
z , n ∈ Z>0, is defined in terms of basis vectors v

(n)

j ⊗zm

with j ∈ {0, 1, . . . , n} and m ∈ Z. The U ′
q(ŝl2) action is given by

e1

(
v

(n)
j ⊗ zm

)
= [j ]

(
v

(n)
j−1 ⊗ zm

)
f1

(
v

(n)
j ⊗ zm

)
= [n − j ]

(
v

(n)
j+1 ⊗ zm

)
t1

(
v

(n)
j ⊗ zm

)
= qn−2j

(
v

(n)
j ⊗ zm

)
e0 ∼ (1 ⊗ z)f1 f0 ∼ (1 ⊗ z−1)e1 t0 ∼ t−1

1 .

(2.6)

We use
(
π(n)

z , V (n)
z

)
to denote the spin-n/2 evaluation representation consisting of the module

V (n)
z and the associated map π(n)

z : U ′
q(ŝl2)→ End

(
V (n)

z

)
.

The algebra Uq(b+) is defined as the Borel subalgebra of U ′
q(ŝl2) generated by e1, e0, t1, t0,

and Uq(b−) is defined to be the Borel subalgebra generated by f1, f0, t1, t0. Suppose we set
out to define a Uq(b+) module in terms of basis vectors |j 〉, j ∈ Z, in the following way:

e1|j 〉 = |j − 1〉 e0|j 〉 = γj |j + 1〉 t1|j 〉 = s0q
−2j |j 〉 (2.7)
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where γj and s0 are, as yet, unknown coefficients (note that we can always absorb an additional
coefficient in the e1|j 〉 = |j − 1〉 relation into a normalization of the basis vectors). Then for
consistency with the Serre relations (2.4), γj must satisfy

γj−3 − [3]γj−2 + [3]γj−1 − γj = 0. (2.8)

The general solution of this recursion relation is

γj = r + s1q
2j + s2q

−2j (2.9)

where r, s1, s2 are arbitrary constants. Thus we can specify such a Uq(b+) module by giving
the four parameters r, s0, s1, s2. In fact, we choose to write r in terms of s1, s2 and a new
parameter z. We make the following definition.

Definition 2.1. M(z, s) is a Uq(b+) module specified in terms of basis vectors |j 〉, j ∈ Z, z ∈
C\{0} and a vector s = (s0, s1, s2) ∈ C

3. The Uq(b+) action is given by

e1|j 〉 = |j − 1〉 e0|j 〉 = dj (z, s1, s2)|j + 1〉 t1|j 〉 = s0q
−2j |j 〉 t0 ∼ t−1

1

where

dj (z, s1, s2) ≡ s1s2
(q − q−1)2

z
+

z

(q − q−1)2
+ s1q

2j + s2q
−2j .

We use the notation (π(z,s ),M(z, s )) to indicate the representation consisting of the Uq(b+)

module M(z, s) and the associated map π(z,s ) : Uq(b+) → End (M(z, s )).

2.2. The tensor product structure

Let us consider tensor products of M(z, s) and V (1)
z as Uq(b+) modules. We have the following

proposition.

Proposition 2.2. If s± ≡ (q±1s0, s1, q
±2s2) then

(a) M(z, s)⊗V (1)
z has a Uq(b+) submoduleM(zq2, s+), and

(
M(z, s)⊗V (1)

z

)/
M(zq2, s+) �

M(zq−2, s−),

(b) V (1)
z ⊗ M(z, s) has a Uq(b+) submodule M(zq−2, s−), and

(
V (1)

z ⊗ M(z, s)
)/

M(zq−2, s−) � M(zq2, s+).

Proof. Let us first prove (a). Define Aj ≡ (
aj |j 〉 ⊗ v

(1)

0 + |j − 1〉 ⊗ v
(1)

1

) ∈ M(z, s) ⊗ V (1)
z ,

where the coefficient aj is as yet undetermined. Clearly we have t1Aj = s+
0 q−2jAj where

s+
0 = qs0. The condition that e1Aj = Aj−1 for all j ∈ Z is equivalent to

aj + s0q
2(1−j) = aj−1. (2.10)

The condition that e0Aj = κjAj+1 for some coefficient κj and for all j ∈ Z is equivalent to

ajdj (z, s1, s2) = aj+1κj (2.11)

and

ajq
2j s−1

0 z + dj−1(z, s1, s2) = κj (2.12)

where the function dj (z, s1, s2) is specified in definition 2.1. Solving equations (2.10)–(2.12)
gives

aj = − s0s1(1 − q2)

zq2
− s0q

2(1−j)

(1 − q2)
(2.13)

κj = dj

(
zq2, s+

1 , s+
2

)
(2.14)
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where s+
0 , s+

1 and s+
2 are the components of s+. In this way, we have shown that when (2.13)

holds, Aj are basis vectors of a submodule isomorphic to M(zq2, s+).
Now consider Bj ≡ |j + 1〉 ⊗ v

(1)
0 ∈ M(z, s) ⊗ V (1)

z . We immediately have that

t1Bj = s0q
−1q−2jBj = s−

0 q−2jBj and e1Bj = Bj−1.

It is also simple to establish that

e0Bj = zq2(j+1)s−1
0 Aj+2 + dj (zq

−2, s−
1 , s−

2 )Bj+1.

Hence we have that
(
M(z, s) ⊗ V (1)

z

)/
M(zq2, s+) � M(zq−2, s−).

The proof of (b) is very similar, the only significant differences are that the analogue of
the vector Aj (which is now in the submodule M(zq−2, s−)) is of the form

Aj = ajv
(1)

0 ⊗ |j + 1〉 + qjv
(1)

1 ⊗ |j 〉
for some aj , and the analogue of Bj (now in the quotient module M(zq2, s+)) takes the form
q−j v

(1)
0 ⊗ |j 〉. �

2.3. The q-oscillator case

Those Uq(b+) representations on which either (e0e1 − q2e1e0) or (e1e0 − q2e0e1) acts as a
constant are referred to as q-oscillator representations [26]. In terms of the action (2.7), these
requirements become either

γj−1 − q2γj = constant (2.15)

or

γj − q2γj−1 = constant (2.16)

respectively. Either of these conditions separately implies (2.8). The general solutions of
(2.15) and (2.16) are

γj = r + s2q
−2j

and

γj = r + s1q
2j

respectively, where r, s1, s2 are arbitrary constants.
Thus the specializations M(z, s0, 0, s2) and M(z, s0, s1, 0) are both q-oscillator

representations. Connecting with the notation V±(λ) notation of [13]: M(λ, s0, 0, s2) is a
representation of the type V+(λ) and M(λ, s0, s1, 0) is a representation of the type V−(λ).2

The two operators Q±(λ) of [13] (see our (1.5)) are obtained by specializing our construction
(3.4) accordingly.

3. The generalized Q-operator

In this section, we will construct a Uq(b−) valued Q-operator Q(z, s ) in terms of the universal
R-matrix and the Uq(b+) module M(z, s) defined in the last section. We will go on to show how
generalized T–Q relations arise as a consequence of proposition 2.2. We will then consider
representations of Q(z, s).

2 In [13], the notation V±(λ) seems to refer originally to a class of representations; but in appendix B, V+(λ) refers
to a specific representation, and in this case we have V+(λ) � M(λ, 1, 0, 0).
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3.1. The operator Q(z, s )

We make use of the universal R-matrix of Uq(ŝl2), which we denote by R ∈ Uq(b+)⊗Uq(b−).
The definition of R can be found in [27]; here we need only the properties

(� ⊗ 1)R = R13R23 (1 ⊗ �)R = R13R12 (3.1)

R12R13R23 = R23R13R12 (3.2)

where as usual R12 = R ⊗ 1 etc.
Then using the representations defined in section 2, we make the following definitions:

L(z) = (
π(1)

z ⊗ 1
)
R ∈ End

(
V (1)

z

)⊗ Uq(b−)

W(z, s) = (π(z,s ) ⊗ 1)R ∈ End (M(z, s)) ⊗ Uq(b−).

By taking the trace we go on to define

T (z) = Tr
V

(1)
z

(L(z)) ∈ Uq(b−) (3.3)

Q(z, s) = TrM(z,s )(W(z, s)) ∈ Uq(b−). (3.4)

The operators L(z) and T (z) are the familiar monodromy matrix and transfer matrix of the
QISM (although these terms are perhaps more commonly reserved for representations of these
algebraic objects on particular quantum spaces). The operator Q(z, s ) is our generalized
Q-operator.

3.2. T–Q relations

Our starting point in the derivation of T–Q relations is the following simple proposition.

Proposition 3.1. If A is an associative algebra, X ∈ A, and A, B, C are finite-
dimensional A modules which form an exact sequence 0 →B →A →C → 0, then TrA(X) =
TrB(X) + TrC(X).

A proof is given in appendix A. To proceed, let us consider the expression(
π(z,s ) ⊗ π(1)

z ⊗ 1
)
(� ⊗ 1)R ∈ End (M(z, s)) ⊗ End

(
V (1)

z

)⊗ Uq(b−). (3.5)

Using the first property in (3.1), we arrive at(
π(z,s ) ⊗ π(1)

z ⊗ 1
)
(� ⊗ 1)R = (

π(z,s ) ⊗ π(1)
z ⊗ 1

)
R13R23 = W1(z, s )L2(z). (3.6)

Suppose we assume that proposition 3.1 also holds for the infinite-dimensional Uq(b+)

modules involved in the exact sequence

0 →M(zq2, s+) →M(z, s) ⊗ V (1)
z →M(zq−2, s−)→0

whose existence is equivalent to part (a) of proposition 2.2. In this case, we will have

Tr
M(z,s )⊗V

(1)
z

(�(X)) = TrM(zq2,s+)(X) + TrM(zq−2,s−)(X) (3.7)

for X ∈ Uq(b+). Taking the trace over M(z, s) ⊗ V (1)
z of both sides of (3.6) and using (3.7)

to rewrite the lhs (as well as the definitions (3.3) and (3.4)) yield

Q(zq2, s+) + Q(zq−2, s−) = Q(z, s)T (z) ∈ Uq(b−).

A similar argument, which now relies on part (b) of proposition 2.2 gives

Q(zq−2, s−) + Q(zq2, s+) = T (z)Q(z, s) ∈ Uq(b−).

Thus we arrive at the T–Q relations

T (z)Q(z, s ) = Q(z, s )T (z) = Q(zq2, s+) + Q(zq−2, s−). (3.8)

In sections 4.3 and 5, we discuss the meaning of the infinite-dimensional trace involved
in the definition of Q(z), and describe various checks of the T–Q relations (3.8) that arise as a
consequence of the assumption about the validity of the extension of proposition 3.1.
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3.3. Commutation relations

The Yang–Baxter relation (3.2) is an equality between elements of Uq(b+)⊗U ′
q(ŝl2)⊗Uq(b−).

Acting on both sides with π(z,s ) ⊗ π
(1)
z′ ⊗ 1 (where z′ ∈ C is arbitrary) gives

W(z, s; z′)W(z, s)L(z′) = L(z′)W(z, s)W(z, s; z′) ∈ End M(z,s ) ⊗ End
V

(1)

z′
⊗ Uq(b−)

where W(z, s; z′) ≡ (
π(z,s ) ⊗ π

(1)

z′
)
R. Multiplying on the right by W(z, s; z′)−1, taking the

trace over M(z, s)⊗V
(1)
z′ , and using the definitions (3.3) and (3.4) we obtain the commutation

relations

[Q(z, s), T (z′)] = 0. (3.9)

It is an obvious next step to attempt to repeat this argument and act with π(z,s ) ⊗π(z′,s ′) ⊗1
on (3.2) in order to derive commutation relations involving Q(z, s ) and Q(z′, s ′). However,
such an argument fails for the simple reason that M(z′, s ′) is only a Uq(b+) module and not
a U ′

q(ŝl2) module. In fact, as discussed in detail in section 4.4, Q(z, s ) and Q(z′, s ′) do not
commute for general s and s′.

3.4. Representations of Q(z, s )

We have constructed both T (z) and Q(z, s ) as Uq(b−) valued objects. Constructing the
operators corresponding to a particular lattice model simply involves choosing a representation
of Uq(b−) (i.e., choosing a Uq(b−) module Vqu and the associated map πqu : Uq(b−) →
End (Vqu)). Such a representation is referred to as the quantum space in the language of the
QISM. If we define

T (z) ≡ πqu(T (z)) ∈ End (Vqu) and Q(z, s) ≡ πqu(Q(z, s )) ∈ End (Vqu)

it then follows from (3.8) and (3.9) that we have the T–Q relations

T (z)Q(z, s ) = Q(z, s)T (z) = Q(zq2, s+) + Q(zq−2, s−) (3.10)

and the commutation relations

[Q(z, s), T (z′)] = 0.

If we choose our quantum space to be equal to V1 ⊗ V2 ⊗ · · · ⊗ VN , as will be the case
for lattice models, then it follows from (3.1) that we have

T (z) = Tr
V

(1)
z

(LN(z)LN−1(z) · · · L1(z))

and

Q(z, s) = TrM(z,s )(WN(z, s)WN−1(z, s) · · · W1(z, s ))

where

Li(z) ≡ (1 ⊗ πVi
)L(z) ∈ End

(
V (1)

z

)⊗ End (Vi)

and

Wi(z, s) ≡ (1 ⊗ πVi
)W(z, s) ∈ End (M(z, s)) ⊗ End (Vi).

Let us comment on the connection between our T–Q relations (3.10) and Baxter’s T–Q
relations [9]. Two differences are immediately apparent. Firstly, there are more parameters in
our relation; Q(z, s) depends upon the spectral parameter z and s = (s0, s1, s2) ∈ C

3 as well
as the parameter q in the universal R-matrix and all parameters associated with the quantum
space Vqu. In section 5, we compute our Q-matrix explicitly for the 6-vertex model, and
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show how with a particular specialization it is related to Baxter’s Q-matrix. Secondly, the
coefficients multiplying the Q(zq2, s+) and Q(zq−2, s−) on the rhs of (3.10) are 1, unlike in
Baxter’s case. This is a trivial point associated with the normalization of the Q-matrix that
we have used in this section. The coefficients will reappear in section 4.2, when we choose to
normalize our Q(z, s) in a more practical way.

4. Properties of Q for the 6-vertex model

In this section, we will consider the operator Wi(z, s) when the Vi appearing in the quantum
space V1 ⊗ V2 ⊗ · · · ⊗ VN is equal to V (1)

wi
, i.e., in the 6-vertex model case. We will determine

the action of Wi(z, s) on the space M(z, s) ⊗ V (1)
wi

up to a multiplicative constant, and show
how the coefficients appearing on the rhs of the T–Q relation depend on this normalization
factor. Finally, we will address the problem of the commutativity of Q-operators.

4.1. Definition of Wi and Q for the 6-vertex model

Let us consider the operator

W(z, s; w) ≡ (
π(z,s ) ⊗ π(1)

w

)
R ∈ End(M(z, s )) ⊗ End

(
V (1)

w

)
. (4.1)

W(z, s; wi) is the operator Wi(z, s) associated with the 6-vertex model with local
inhomogeneity parameter wi .

In order to determine W(z, s; w) explicitly, definition (4.1) is rather inconvenient, because
it involves the unwieldy universal R-matrix. It is easier to construct an operator W(z, s; w) ∈
End(M(z, s )) ⊗ End

(
V (1)

w

)
which satisfies the properties

W(z, s; w)
(
π(z,s ) ⊗ π(1)

w

)
�(ti) = (

π(z,s ) ⊗ π(1)
w

)
�′(ti )W(z, s; w) (4.2)

W(z, s; w)
(
π(z,s ) ⊗ π(1)

w

)
�(ei) = (

π(z,s ) ⊗ π(1)
w

)
�′(ei)W(z, s; w). (4.3)

Since M(z, s) ⊗ V (1)
w is an irreducible Uq(b+) module for generic z, s and w, it follows that

an operator satisfying properties (4.2)–(4.3) is unique up to a multiplicative constant. By
definition, W(z, s; w) also satisfies (4.2)–(4.3) and so will be proportional to W(z, s; w).

Let us solve (4.2)–(4.3). Firstly, relation (4.2) requires that W(z, s; w) must be of the
form

W(z, s; w)|j 〉 ⊗ v
(1)

0 = αj,0|j 〉 ⊗ v
(1)

0 + βj,0|j − 1〉 ⊗ v
(1)

1 (4.4)

W(z, s; w)|j 〉 ⊗ v
(1)
1 = αj,1|j 〉 ⊗ v

(1)
1 + βj,1|j + 1〉 ⊗ v

(1)
0 (4.5)

where αj,0, αj,1, βj,0 and βj,1 are arbitrary coefficients. Then, (4.3) is satisfied if and only if

βj−1,0 = q−1βj,0

αj−1,0 = qαj,0 + βj,0

αj−1,1 + s0q
−2jβj,0 = q−1αj,1

βj−1,1 + s0q
−2jαj,0 = αj,1 + qβj,1

dj (z, s1, s2)αj+1,0 + s−1
0 q2jwβj,1 = q−1dj (z, s1, s2)αj,0

dj (z, s1, s2)βj+1,0 + s−1
0 q2jwαj,1 = wαj,0 + qdj−1(z, s1, s2)βj,0

dj (z, s1, s2)αj+1,1 = qdj(z, s1, s2)αj,1 + wβj,1

dj (z, s1, s2)βj+1,1 = q−1dj+1(z, s1, s2)βj,1
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where the function dj (z, s1, s2) is specified in definition 2.1. These equations have the general
solution

αj,0 =
(

s2

w
q(1 − q2)q−j − qj

q − q−1

)
ρ αj,1 =

(
s0s1

w
q(q−2 − 1)qj − s0

q−j

q − q−1

)
ρ

(4.6)

βj,0 = qjρ βj,1 = s0
q−j

w
dj (z, s1, s2)ρ

where ρ is an arbitrary constant.
Let us choose the normalization constant ρ to be an as yet unspecified function ρ(z, s,w),

and define the Q-operator in terms of W(z, s,w) (given by (4.4), (4.5) and (4.6)) by

Q(z, s) = TrM(z,s )(W(z, s; wN)W(z, s; wN−1) · · · W(z, s; w1)). (4.7)

4.2. Normalized T–Q relations for the 6-vertex model

Since we are dealing with the 6-vertex model, we have to consider the Lax operator Li(z) of
section 3 in the case when the quantum space is Vi = V (1)

wi
. This is given by the matrix

R(z/wi) = (
π(1)

z ⊗ π(1)
wi

)
R (4.8)

acting on V (1)
z ⊗ V (1)

wi
. The matrix R(z/w) is proportional to the normalized matrix R(z/w)

given by

R(z/w)v
(1)

0 ⊗ v
(1)

0 = v
(1)

0 ⊗ v
(1)

0

R(z/w)v
(1)

0 ⊗ v
(1)

1 = q
(
1 − z

w

)
1 − q2 z

w

v
(1)

0 ⊗ v
(1)

1 +
z
w
(1 − q2)

1 − q2 z
w

v
(1)

1 ⊗ v
(1)

0

(4.9)

R(z/w)v
(1)
1 ⊗ v

(1)
0 = q

(
1 − z

w

)
1 − q2 z

w

v
(1)
1 ⊗ v

(1)
0 +

1 − q2

1 − q2 z
w

v
(1)
0 ⊗ v

(1)
1

R(z/w)v
(1)

1 ⊗ v
(1)

1 = v
(1)

1 ⊗ v
(1)

1 .

We define the normalized transfer matrix of the 6-vertex model by

T (z) = Tr
V

(1)
z

(R(z/wN)R(z/wN−1) · · · R(z/w1)). (4.10)

We are going to derive the coefficients in the T–Q relation associated with the above
normalization of T (z) and Q(z, s). As a preliminary, let us introduce a little more notation:
we use |j 〉± to denote the basis vectors in M(zq±2, s±); ι to denote the embedding

ι : M(zq2, s+) → M(z, s) ⊗ V (1)
z

|j 〉+ 
→Aj

and π to denote the projection

π : M(z, s) ⊗ V (1)
z → M(zq−2, s−)

Bj 
→ |j 〉−.

Aj and Bj are as defined in the proof of proposition 2.2.
The coefficients of the T–Q relation are then obtained from the action of

W(z, s; w)R(z/w) on the space M(z, s) ⊗ V (1)
z ⊗ V (1)

w . By direct calculation we find

W 13(z, s; w)R23(z/w)Aj ⊗ v
(1)

0 = φ1(z, s,w)
[
α+

j,0Aj ⊗ v
(1)

0 + β+
j,0Aj−1 ⊗ v

(1)

1

]
(4.11)

W 13(z, s; w)R23(z/w)Aj ⊗ v
(1)

1 = φ1(z, s,w)
[
α+

j,1Aj ⊗ v
(1)

1 + β+
j,1Aj+1 ⊗ v

(1)

0

]
(4.12)
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W 13(z, s; w)R23(z/w)Bj ⊗ v
(1)

0 = φ2(z, s,w)
[
α−

j,0Bj ⊗ v
(1)

0 + β−
j,0Bj−1 ⊗ v

(1)

1

]
(4.13)

W 13(z, s; w)R23(z/w)Bj ⊗ v
(1)
1 = φ2(z, s,w)

[
α−

j,1Bj ⊗ v
(1)
1 + β−

j,1Bj+1 ⊗ v
(1)
0

]
(4.14)

+
z(1 − q2)

w − q2z
βj+1,0Aj+1 ⊗ v

(1)

1 +
z(1 − q2)

w − q2z
αj+1,0Aj+2 ⊗ v

(1)

0 (4.15)

where

φ1(z, s,w) ≡ ρ(z, s,w)

ρ(zq2, s+, w)

w − z

w − q2z
φ2(z, s,w) ≡ ρ(z, s,w)

ρ(zq−2, s−, w)
q. (4.16)

α±
j,0, α

±
j,1, β

±
j,0, β

±
j,1 are the coefficients (see relations (4.4)–(4.6)) specifying the action of

W(z, s±; w) on M(z, s±) ⊗ V (1)
w .

An immediate consequence of (4.11)–(4.15) is that we have

W 13(z, s; w)R23(z/w)ι(|j 〉+) ⊗ v(1)
ε = φ1(z, s,w)(ι ⊗ 1)W(zq2, s+; w)|j 〉+ ⊗ v(1)

ε

(π ⊗ 1)W 13(z, s; w)R23(z/w)Bj ⊗ v(1)
ε = φ2(z, s,w)W(zq−2, s−; w)|j 〉− ⊗ v(1)

ε

for ε ∈ {0, 1}. It then follows (by the appropriate modification of the argument in the proof in
appendix A by the factors φ1 and φ2) that

Tr
M(z,s )⊗V

(1)
z

(W 13(z, s; w)R23(z/w)) = φ1(z, s,w) TrM(zq2,s+)(W(zq2, s+; w))

+ φ2(z, s,w) TrM(zq−2,s−)(W(zq−2, s−; w)).

This is the normalized T–Q relation associated with a quantum space V (1)
w . More generally, a

modification of the above argument to the case when the quantum space is V (1)
w1

⊗V (1)
w2

⊗· · ·⊗
V (1)

wN
gives the normalized T–Q relations

Q(z, s)T (z) =T (z)Q(z, s) =
(

N∏
i=1

φ1(z, s,wi)

)
Q(zq2, s+) +

(
N∏

i=1

φ2(z, s,wi)

)
Q(zq−2, s−).

(4.17)

4.3. Some comments on the definition of Q

We have defined our generalized Q-operator for the 6-vertex model by formula (4.7).
Let us make some comments on this definition. First of all, we note that, due to the
charge conservation property (4.2), the operator (4.7) is a block-diagonal matrix, each block
connecting vectors of V (1)

w1
⊗ · · · ⊗ V (1)

wN
containing the same number of v

(1)

0 . Next, we remark
that it follows from the explicit expression for W(z, s; w) given by (4.4)–(4.6), that matrix
elements of the Q-operator (4.7) will have the following form:

N∑
k=0

ak(z, s,w1, . . . , wN, q)δ(qk)

where ak(z, s,w1, . . . , wN, q) is a product of the ρ(z, s,wi) normalization factors with a
rational function of z, s,w1, . . . , wN, q , and δ(qk) ≡ ∑

j∈Z
qkj . When k �= 0, δ(qk) is a

formal series; but clearly some care is needed in interpreting the meaning of δ(qk) when
k = 0! The situation becomes clearer if we restrict the case s1 = s2 = 0: with this restriction
this δ(q0) appears only as an overall multiplicative factor in the central block of Q connecting
N/2 vectors v

(1)

0 , and thus cancels from both sides of the T–Q relation. Moreover, Baxter has
an explicit expression for the central block of his Q-operator [6], and in section 5 we establish
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an equality between the central block of our Q (with the s1 = s2 = 0 restriction and δ(q0)

replaced by 1) and Baxter’s operator.
This result leads us to conjecture that the T–Q relations (4.17) hold if we simply replace

δ(q0), wherever it appears in the matrix elements of Q(z, s), by a constant (say 1). As further
support to this conjecture, we have checked explicitly in the case when N = 2 and s is generic,
that the T–Q relation holds independently of the value assigned to δ(q0).

4.4. Commutation relations of Q for the 6-vertex model

In section 3, we have constructed a generalized Q-operator Q(z, s) satisfying the T–Q relation
(3.8) and commuting with T (z′). We have already remarked in section 3.3 that, unlike the
commutativity with T (z′), the commutativity of Q(z, s ) with Q(z′, s ′) cannot be shown by
general algebraic arguments. Therefore, in order to deal with this fact, we have to choose
particular representations for the quantum space. We will focus on the 6-vertex model, for
which the Q-operator is given by Q(z, s) (4.7).

Let us start by saying that explicit calculations performed in the case N = 2 show that
Q(z, s) and Q(z′, s ′) do not commute for general values of the parameters z, s and z′, s ′.
On the other hand, we will show in the following section that such commutativity holds for
general N when we restrict to the case

s1 = s2 = s′
1 = s′

2 = 0. (4.18)

5. An explicit form of Q for the 6-vertex model

In this section, we give a simple explicit expression for our Q-operator (4.7) for general N,
when we make the specialization s1 = s2 = 0. We shall find that this expression is related to
equation (101) of [6] (which is an expression for the central block of the Q-matrix when the
number of lattice sites N is even).

First of all, let us define matrix elements of W(z, s,w) and Q(z; s) of section 4.1. In this
section, we will use the notation v

(1)

+(−) in place of v
(1)

0(1) in order to facilitate comparison with
[6]. We define matrix elements by

W(z, s,w)|j 〉 ⊗ v
(1)
β =

∑
α

W(z, s,w)
jβ

j ′α|j 〉 ⊗ v(1)
α where j ′ = j + (α − β)/2

Q(z, s)
(
v

(1)
β1

⊗ v
(1)
β2

⊗ · · · ⊗ v
(1)
βN

)
=

∑
α1,α2,...,αN

Q(z, s )β1,β2,...,βN

α1,α2,...,αN

(
v(1)

α1
⊗ v(1)

α2
⊗ · · · ⊗ v(1)

αN

)
.

Fixing w1 = · · · = wN = w, it then follows from (4.7) that we have

Q(z, s)β1,...,βN

α1,...,αN
=
∑
j∈Z

W(z, s; w)
jN−1,βN

j,αN
W(z, s; w)

jN−2,βN−1
jN−1,αN−1

· · · W(z, s; w)
j,β1
j1,α1

. (5.1)

where jk = j + 1
2 (α1 + α2 + · · · + αk−1) − 1

2 (β1 + β2 + · · · + βk−1).

Now let us consider the matrix elements W(z, s,w)
jβ

j ′α given by (4.6), in the special case
when s1 = s2 = 0. In this case, we have

W(z, s,w)
j+
j+ = − ρqj

q − q−1
W(z, s,w)

j−
j− = − s0ρq−j

q − q−1
(5.2)

W(z, s,w)
j+
j−1− = ρqj W(z, s,w)

j−
j+1+ = z

w

s0ρq−j

(q − q−1)2
. (5.3)
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It a simple consequence of charge conservation (i.e. the property that W(z, s,w)
jβ

j ′α is only
nonzero for j ′ = j + (α − β)/2) that whenever we have a contribution to (5.1) of the form
W(z, s,w)·+·− we must also have one of the form W(z, s,w)·−·+ . So when computing (5.1), we
can equally use the more symmetric expressions

W(z, s,w)
j+
j−1− = −

( z

w

) 1
2

√
s0ρqj

q − q−1
W(z, s,w)

j−
j+1+ = −

( z

w

) 1
2

√
s0ρq−j

q − q−1
.

Then, if we define ρ̃ = −
√

s0ρ

q−q−1 , we can write both (5.2) and (5.3) as

W(z, s,w)
jβ

j ′α =
( z

w

)(1−αβ)/4
s
−(α+β)/4
0 ρ̃qjβ . (5.4)

Using the form (5.4), it is then straightforward to compute a simple expression for
(5.1). The matrix is block diagonal, consisting of blocks for which α1 + α2 + · · · + αN =
β1 + β2 + · · · + βN = n, where n ∈ {−N,−N + 2, . . . , N}. The block labelled by n in this way
has the form

Q(z, s)β1,...,βN

α1,...,αN
= s

−n/2
0 δ(qn)

(zq

w

)N/4
ρ̃Nq

1
4

∑
i<j (βjαi−αj βi)

(
w

zq

) 1
4

∑
i αiβi

(5.5)

where the function δ(qn) = ∑
j∈Z

qnj arises from sum over j in expression (5.1).
Now, let us compare (5.5) to Baxter’s Q-matrix given by equation (101) of [6] as

[QBax(v)]β1,...,βN

α1,...,αN
= exp

1

2
iη

N∑
k=1

k−1∑
j=1

(αjβk − αkβj ) +
1

2
iv

N∑
j=1

αjβj

 . (5.6)

Clearly, if we identify

q = exp(2iη)
w

zq
= exp(2iv) (5.7)

and choose the arbitrary normalization function ρ̃ to be

ρ̃ = ρ̃(z, s,w) = (zq/w)−
1
4 (5.8)

then we have

Q(z, s)β1,...,βN

α1,...,αN
= s

−n/2
0 δ(qn)[QBax(v)]β1,...,βN

α1,...,αN
. (5.9)

Let us emphasize, that whereas (5.6) is derived in [6] as an expression for the n = 0 block of
the Q-matrix, our expression (5.5) or (5.9) is valid for all blocks (the n = 0 case is discussed
below). It is also valid for N both even and odd. Also note that the choice (5.7) is the one
required in order to identify (up to a normalization and gauge transformation) our 6-vertex
model R-matrix R(z/w) with Baxter’s R-matrix given as a function of v and η.3

Let us now consider the δ(qn) term appearing in (5.9), and its meaning in the context of
the T–Q relations (4.17) and the commutativity with T. For this purpose, it is useful to define
a new matrix without the delta function:

Q̃(z, s ) ≡ Q(z, s)/δ(qn) = s
−n/2
0 QBax(v). (5.10)

For n = 0, δ(qn) is clearly meaningless, but we conjecture that Q̃(z, s) still obeys the
T–Q relations (4.17) and still commutes with T (z′): namely we conjecture that

T (z)Q̃(z, s ) = (φ1(z, s,w))NQ̃(zq2, s+) + (φ2(z, s,w))NQ̃(zq−2, s−) (5.11)
3 The paper [6] primarily concerns the 8-vertex model, but the explicit formula (101) is obtained in the 6-vertex
model limit.
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and

[T (z′), Q̃(z, s )] = 0

when n = 0. If Baxter’s construction is valid, this should of course be true, and we have
checked up to N = 10 that the conjecture holds. Note that for the restriction s1 = s2 = 0 and
the choice (5.8) made here, we have

φ1(z, s,w) = q
w − z

w − q2z
φ2(z, s,w) = 1.

When n �= 0, δ(qn) is well defined as a formal series in q, and Q(z, s) obeys (4.17) and
commutes with T (z′) by construction. As a consequence, it follows that (5.11) hold whenever
qn = 1 (checks confirm this up to N = 8). Checks also show that (5.11) are not valid for
generic q and generic n �= 0.

In summary: the situation for n = 0 is that Q(z, s) is ill defined but Q̃(z, s) appears to
obey (5.11); for n �= 0,Q(z, s ) obeys (4.17) and commutes with T (z′) by construction, and
Q̃(z, s) obeys (5.11) when qn = 1.

Finally, we show in appendix B that

[Q̃(z, s), Q̃(z′, s ′)] = 0 (5.12)

for all n, including n = 0. This property implies in particular the commutativity between
Q(z, s) and Q(z′, s ′) when n �= 0 (and when we restrict to s1 = s2 = 0 as elsewhere in this
section).

6. Discussion

To summarize: we have defined a Uq(b+) representation M(z, s), and used it to construct a
Uq(b−) valued operator Q(z, s) that obeys the generalized T–Q relations (3.8) and commutes
with the operatorT (z′). In section 2.3, we have shown how, upon restricting s,Q(z, s ) reduces
to the operators Q±(λ) constructed in terms of q-oscillator representations in [13].

We have then considered a representation of this object on the quantum space
V (1)

w1
⊗ · · · ⊗ V (1)

wN
corresponding to the 6-vertex model, and shown how the T–Q relations

are modified by the coefficients φ1 and φ2 appearing in (4.17).
We then proceeded to obtain the explicit form (5.9) for Q(z, s)—valid for the s1 = s2 = 0

case. When n �= 0,Q(z, s ) obeys relations (4.17), and commutes with T (z′) and Q(z′, s ′).
When n = 0,Q(z, s) is ill defined, but Q̃(z, s ) obeys (5.11) (up to N = 10 at least) and
commutes with Q̃(z′, s). So in either case, n �= 0 or n = 0, our construction yields a well
defined Q-matrix, either Q(z, s) or Q̃(z, s), that obeys the T–Q relations and commutes both
with T (z′) and with itself at different values of z and s.

In section 5, we have also discussed the properties of Q̃(z, s ) when n �= 0, and there is
a slightly mysterious aspect to this: while our algebraic construction of Q(z, s) is valid for q
generic, we find that Q̃(z, s ) obeys relations (5.11) in the root of unity qn = 1 case. Clearly,
this fact arises as a consequence of the delta function in (5.9), that in turn comes from the
infinite-dimensional trace. Beyond this comment, we have no real understanding of this fact,
but feel that it is still worth pointing it out, especially in the light of recent interest in the
6-vertex model at roots of unity [28].

We would like to mention some potential applications of our construction that we hope
to consider in a future work. Firstly, there are intriguing similarities between our generalized
T–Q relations and the functional relations [21] linking the wavefunctions of the anharmonic
Schrödinger equation in different Stokes sectors. The later functional relations also possess
extra parameters over the conventional T–Q relations that shift in a manner very similar to
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ours (although there is one less parameter in the Stokes relations). Secondly, it is possible to
derive Bethe equations from our generalized T–Q relations that differ from the conventional
equations in the possible s dependence of the Bethe roots. It would be interesting to attempt
to understand the solutions of such systems in the light of the fact that [Q(z, s ),Q(z′, s ′)] �= 0
in general. Finally, it would be interesting to consider representations of our Q(z, s) on a
‘continuous’ quantum space in order to be able to make connections with the constructions
given in [12, 29].
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Appendix A. Proof of proposition 3.1

Let
{
a

(1)
1 , a

(1)
2 , . . . , a

(1)
N , a

(2)
1 , a

(2)
2 , . . . , a

(2)
M

}
be a basis for A, {b1, b2, . . . , bN } be a basis of B,

and {c1, c2, . . . , cM} be a basis of C, such that the A linear injection ι and surjection π are
given by

ι : B → A π : A → C

bi 
→ a
(1)
i a

(1)
i 
→ 0 a

(2)
i 
→ci.

The action of X on these basis vectors defines the following matrices:

Xa
(1)

j =
N∑

i=1

(1)XA
ija

(1)

i Xa
(2)

j =
M∑
i=1

(2)XA
ija

(2)

i +
N∑

i=1

(3)XA
ija

(1)

i

Xbj =
N∑

i=1

XB
ij bi Xcj =

M∑
i=1

XC
ij ci.

The required trace is given by

TrA(X) =
N∑

i=1

(1)XA
ii +

M∑
i=1

(2)XA
ii .

Now note that we can write
N∑

i=1

(1)XA
ija

(1)
i = Xa

(1)
j = Xιbj = ιXbj =

N∑
i=1

XB
ija

(1)
i

and
M∑
i=1

XC
ij ci = Xc

(1)

j = Xπa
(2)

j = πXa
(2)

j =
M∑
i=1

(2)XA
ij ci.

Hence, we have
(1)XA

ij = XB
ij

(2)XA
ij = XC

ij ,

and the proposition then follows. �
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Appendix B. Proof of [Q̃(z, s), Q̃(z′, s′)] = 0

In this section, we will prove that the operator Q̃(z, s), defined in section 5, has the
commutativity property

[Q̃(z, s), Q̃(z′, s ′)] = 0. (B.1)

(Recall that we have restricted s1 = s2 = 0 in the definition of Q̃(z, s ).)
From the definition of Q̃(z, s ) given by (5.6), (5.9) and (5.10), it follows that

[Q̃(z, s), Q̃(z′, s ′)]
γ

α = s−n
0

∑
β

[
exp

(
1

2
ivα · β +

1

2
iv′β · γ

)

− exp

(
1

2
iv′α · β +

1

2
ivβ · γ

)]
exp

(
1

2
iη(α − γ ) ∧ β

)
where we have introduced the notation

α ≡ (α1, . . . , αN) etc α · β =
N∑

j=1

αjβj α ∧ β =
N∑

k=1

k−1∑
j=1

(αjβk − αkβj ). (B.2)

Now, it is simple to show that, given α belonging to the nth block (i.e.
∑

i αi = n), every other
element γ belonging to the same block can be written as γ = Pα, where P is an element of
the symmetric group SN which has the following properties:

P = Pi1,i2Pi3,i4 · · · Pik−1,ik i1 < i2, i3 < i4, . . . , ik−1 < ik
(B.3)

[i1, i2] ⊃ [i3, i4] ⊃ · · · ⊃ [ik−1, ik] 1 � i1, . . . , ik � N

and Pj,k is the operator with action

Pj,k(α1, . . . , αj , . . . , αk, . . . , αN) = (α1, . . . , αk, . . . , αj , . . . , αN).

It follows from the definition of P that the following properties hold:

P 2 = 1 Pα · Pβ = α · β.

Using these properties we rewrite our commutator in the following form:

[Q̃(z, s), Q̃(z′, s ′)]Pα
α = s−n

0

2

∑
β

[
exp

(
1

2
ivPα · Pβ +

1

2
iv′α · Pβ

)

− exp

(
1

2
iv′Pα · Pβ +

1

2
ivα · Pβ

)][
exp

(
1

2
iη(α − Pα) ∧ β

)
− exp

(
1

2
iη(α − Pα) ∧ Pβ

)]
.

We will prove by induction (over P) the property

(α − Pα) ∧ (β − Pβ) = 0 ∀α, β, P (B.4)

which implies that the previous commutator is zero.
Firstly, property (B.4) is easily shown when P = Pjk , 1 � j < k � N . Next, let us make

the inductive hypothesis that (B.4) is true for a given P of the form

P = Pi1,i2Pi3,i4 · · · Pik−1,ik i1 < i2, i3 < i4, . . . , ik−1 < ik
(B.5)

[i1, i2] ⊃ [i3, i4] ⊃ · · · ⊃ [ik−1, ik] 1 � i1, . . . , ik � N.

Now define P ′ by

P ′ = PPij where i < j and [ik−1, ik] ⊃ [i, j ]. (B.6)
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Then we have that

(α − P ′α) = (α − Pα) + (α − Pijα)

and so (B.4) will be true for P ′ if

(α − Pα) ∧ (β − Pijβ) + (α − Pijα) ∧ (β − Pβ) = 0. (B.7)

Using the definition of the wedge product, the lhs is equal to∑
i�l<j

[αl − (Pα)l ](βj − βi) −
∑

i<l�j

[αl − (Pα)l](βi − βj) −
∑

i�l<j

[βl − (Pβ)l](αj − αi)

+
∑

i<l�j

[βl − (Pβ)l](αi − αj ). (B.8)

However, it follows from the definitions (B.5) and (B.6) that we have

αl − (Pα)l = 0 ∀l such that i � l � j

βl − (Pβ)l = 0 ∀l such that i � l � j

and therefore that expression (B.8) is equal to 0. It follows that (B.4) and hence (B.1) is true.
�
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